AutoInformation State aggregation

a dynamical point of view

Markov Chain

..., X_{past}, X_{now}, X_{future}, ...

Projection

••••, **y** past, **y** now, **y** future, •••

Aggregation strategies

AutoInformation

 $I(y_t; y_{t-\tau})$

Non-linear *correlation* between successive time-steps

M.F. et al, Journal of Complex Networks, cnx055

M. Faccin @ Complex Networks (Madrid 2021)

AutoInformation

 $I(y_t; y_{t-\tau})$

```
Non-linear correlation
between successive
time-steps
```

$$I(y_t; y_{t-\tau}) = I(y_t; y_{t-\tau}, \dots) = I(y_t; y_{t-\tau}, \dots)$$
²non-Markovianity
$$I(y_t; y_{t-\tau}, \dots | y_{t-\tau})$$

where $oldsymbol{ au}$ represents a time-scale parameter. Maximized by a Markov chain that:

- ¹ Maximize predictability of the dynamics
- ² Minimize non-Markovianity (effective memories from the projection)

M.F. et al, Journal of Complex Networks, cnx055

Modularity

Random walker covariance

 χ_c characteristic function of class c

$$Q = \sum_{c} \operatorname{Cov} \left(\chi_{c}(t), \chi_{c}(t+1) \right)$$

Auto-covariance of the dynamics on the partition space.

Linear correlation between consecutive time-steps.

Modularity:

$$Q = \frac{1}{2m} \sum_{ij} \left[A_{ij} - \frac{k_i k_j}{2m} \right] \delta(c_i, c_j)$$

Shen et al. (2010) PRE, 82, 016114

Fitting a generative model (e.g. DC-SBM) to the data through log-likelihood maximization can be seen as maximizing the AutoInformation for paths of lenght $\tau = 1$ (e.g. links).

$$I(Y_t; Y_{t-1}) = H(Y_y) + H(Y_{t-1}) - H(Y_y, Y_{t-1})$$

$$H(Y_t) = -\sum_c \frac{e_c}{2m} \log \frac{e_c}{2m} \quad e_c = \sum_{i \in c, j} A_{ij}$$

$$H(Y_t, Y_{y-1}) = -\sum_{cd} \frac{e_{cd}}{2m} \log \frac{e_{cd}}{2m} \quad e_{cd} = \sum_{i \in c, j \in d} A_{ij}$$

$$DC-SBM$$

$$S \propto \frac{1}{2} \sum_{cd} e_{cd} \log \frac{e_{cd}}{e_c e_d}$$

In binary symmetric networks

Karrer and Newman (2011), PRE 83, 016107.

M. Faccin @ Complex Networks (Madrid 2021)

AutoInformation

 $I(y_t; y_{t-\tau})$

Non-linear *correlation* between successive time-steps

The parameter au selects the *time-scale* of the aggregation.

Maximizing in a naive way is not possible, one need to fix the number of classes or apply some **model selection**. E.g. a entropic Lagrange multiplier:

 $\mathcal{I}_{\alpha\tau} = I(y_t; y_{t-\tau}) - \alpha H(y_t)$

Didactic Examples.

A regular ring lattice with N nodes, each connected with **k** neighbours.

How many classes?

A regular ring lattice with N nodes, each connected with **k** neighbours.

How many classes?

A regular ring lattice with N nodes, each connected with **k** neighbours.

$$egin{aligned} p_{ij} = & lpha_{c_i c_j} \cdot (\gamma_{c_i c_j})^{d_{ij}} \ & lpha_{c_i c_j}, \gamma_{c_i c_j} \in \llbracket 0,1
brace \end{aligned}$$

with d_{ij} a (normalized) distance between nodes aligned on a cycle.

M. Faccin @ Complex Networks (Madrid 2021)

DC-SBM	
spectral	
AutoInfo $ au=$ 1	
AutoInfo $ au=5$	Γ

Global Drifter Program

Each time step lasts 16 days.

M. Faccin @ Complex Networks (Madrid 2021)

Each time step lasts 16 days.

Each time step lasts 16 days.

🖈 Finally...

? Questions?

Joint work with:

JC Delvenne UCLouvain M Schaub

▲ https://maurofaccin.github.io ☑ mauro.fccn@gmail.com

Code at: P https://maurofaccin.github.io/aisa