Auto-information in non-Markovian diffusion systems.
@Complex Networks, Lisboa, 10 Dec 2019

Mauro Faccin
icteant, uclouvain, Belgium

Intro

Projected Markov Chains

A markov chain

..., $X_{\text {past }}, X_{\text {now }}, X_{\text {future }}, \ldots$

Its projection

$\ldots, y_{\text {past }}, y_{\text {now }}, У_{\text {future }}, \ldots$

Complexity

Where did the complexity go?

Complexity

Where did the complexity go?

Part of the complexity is now hidden in the [projected] dynamics.
Emergence of effective memories.

The Entrogram

Entrogram

Information flowing from the PAST toward the FUTURE.

where $I(X ; Y)=H(X)-H(X \mid Y)$ is the Mutual Information

Entrogram: Information flowing from the PAST to the FUTURE

$$
I\left(y_{t} ; y_{t-2}, y_{t-3}, \ldots \mid y_{t-1}\right)
$$

[^0]
Entrogram: a compact description of the system complexity

\square [Total] Predictability, how the dynamics are aligned to the partition.

- Emergent effective memory
$\square+\square$ Overall complexity (excess entropy) of the dynamical process

[^1]
An Example: the Bow-tie

Assortative partition

Equitable partition

An Example: the Bow-tie

Assortative partition

Equitable partition

Auto-information

Enhance your Entrogram

where $\boldsymbol{\tau}$ represents a time-scale parameter.
M.F. et al, Journal of Complex Networks, cnx055

Why Auto-information?

Modularity:

$$
Q=\frac{1}{2 m} \sum_{i j}\left[A_{i j}-\frac{k_{i} k_{j}}{2 m}\right] \delta\left(c_{i}, c_{j}\right)
$$

χ_{c} characteristic variable of partition c

$$
Q \propto \sum_{c} \operatorname{Cov}\left(\chi_{c}(t), \chi_{c}(t+1)\right)
$$

Modularity can be interpreted as auto-covariance of the dynamics (linear dependence of consecutive time-steps).

Blocks and NON-Markovian dynamics

Example: Backtracking

Erdős-Rényi with nodes of two different classes.

Walkers have higher probability to go back to a visited class (second order memory).

The complexity of the system resides on the dynamics.

Example: Backtracking

Erdős-Rényi with nodes of two different classes.

Walkers have higher probability to go back to a visited class (second order memory).

The complexity of the system resides on the dynamics.

Web-portal

NESIU News

Economy E E E
 Sports

Web-portal

Web-portal

Web-portal

Web－portal users are non－Markovian

Comparison of the entrogram for the
Single recorded path：
$X: \longrightarrow$ 圊 \longrightarrow 机 \longrightarrow 国 real dataset and the Markovian approximation．The former is at least Markovian of third order．

Web-portal: dynamical patterns

IIMarkovian dynamics

- Real data

Some dynamical patterns are underestimated by the Markovian approximation.

3-steps dynamical patterns of the original dataset (green) and the Markovian approximation (purple).

Web-portal: page partition

Partitions with different time-scales are slightly different.

Web-portal: dynamics simulations

Average error after few steps (6) when using the partitions as a Markovian model.
Comparison with the original dynamics (green) and the Markovian approximation (purple).

Conclusions

Questions?

Joint work with:

JC Delvenne

■ UCLouvain

M Schaub
(iiilit Onversiv of

IDSS

https://maurofaccin.github.io mauro.faccin@uclouvain.be

Code at:
https://github.com/maurofaccin/entropart

The full story

We need a regularization term:

$$
\mathcal{I}_{\beta}(\tau)=I\left(y_{t}, y_{t-\tau}\right)-\beta H\left(y_{t}\right)
$$

[^0]: Faccin, Schaub, Delvenne Journal of Complex Networks, 6(5), 2018, p661-678
 Crutchfield and Young (1989) PRL, 63, 105.
 Crutchfield and Feldman (2003) Chaos, 13, 25-54.

[^1]: Faccin, Schaub, Delvenne Journal of Complex Networks, 6(5), 2018, p661-678
 Crutchfield and Young (1989) PRL, 63, 105.
 Crutchfield and Feldman (2003) Chaos, 13, 25-54.

