Equilibrium and Kinetics of the Ankyrin Repeat Protein Myotrophin through a Simple Statistical Mechanical Model

Mauro Faccin and Pierpaolo Bruscolini

Overview

- Overview of the problem
- WSME model
- Equilibrium methods and results
- Kinetics methods and results
- Conclusions

Myotrophin

- it's a repeat protein of the ankirin family;
- experimental two-state equilibrium;
- experimental two-state kinetics;
- pathways heterogeneity: N-terminal and C-terminal domain.

Myotrophin

Native contacts map $\Delta_{i,j}$ =number of atomic contacts between residues *i* and *j*.

Atomic contact $\Leftrightarrow d(atom(i), atom(j)) < 3.5$ Å.

WSME

The Hamiltonian:

$$H = -\sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \varepsilon_{i,j} \Delta_{i,j} \mathbf{m}_{i,j} + \sum_{k=1}^{N} (\mathbf{q}_k \mathbf{T} + \alpha_k c) \mathbf{m}_k, \qquad (1)$$

Dynamic variables:

 m_k State of k residue (1 = native, 0 = denatured); $m_{i,j} = \prod_{k=i}^{j} m_k.$

Parameters:

- $\Delta_{i,j}$ Number of contacts between residues *i* and *j*;
 - $\varepsilon_{i,j}$ Energy cost of one-contact breaking;
 - *q_k* Entropy gain of one-residue unfolding;
 - α_k Parameter governing the denaturant action;
 - c Denaturant (urea) molar contentration;
 - T Temperature.

WSME

Mutations:

- We mimic a mutation modifying the strength of a selected group of native contacts;
- We select a total amount of *mutation strength* constant for all mutation (ε_{tot} = 9.21kJ/mol);
- We decrease of $\Delta \varepsilon_{i,j}$ the energy cost of each contact;
- $\Delta \varepsilon_{i,j}$ vary to satisfy the total perturbation constrain.

Equilibrium: Methods

WMSE model:

- Partition function Z can be exactly calculated in equilibrium.
- Thermodynamics quantities can be as well computed:

$$\begin{array}{l} \rightarrow \quad F, E, S, C_{p}; \\ \rightarrow \quad < m_{k} >; \\ \rightarrow \quad < s_{i,j} >= \left\langle (1 - m_{i-1}) \left(\prod_{k=i}^{j} m_{k} \right) (1 - m_{j+1}) \right\rangle \end{array}$$

The order parameter p(z) = m(z)-u(z)/n(z) (z denaturant concentration, u(z), n(z) baselines for unfolded and native state)

Parameters Fitting

- Parameters are choosen as constants: $\varepsilon_{i,j} = \varepsilon, q_k = q = 2R, \alpha_k = \alpha$.
- The parameters values of ε and α are adjusted to experiments in order to reproduce T_m and c_m .

Temperature (left) and denaturant (right) denaturation curves.

Equilibrium

Free-Energy profile in folding (left) and unfolding (right) denaturant conditions. This analysis reveals a four minima landscape.

Landscape

Inverse native string propabilities at strong folding condition (c = 0). This is representative of the landscape conformation.

$$< s_{i,j} >^{-1} = \left< (1 - m_{i-1}) \left(\prod_{k=i}^{j} m_{k} \right) (1 - m_{j+1}) \right>^{-1}$$

11

Kinetics

Kinetics: Methods

- Montecarlo simulation over 2000 proteins;
- Metropolis algorithm, 1-residue flip per step;
- Observables: *m*(*t*);
- Helices last [un]folding time t_{α} .

Kinetics: Results

2-state kinetics despite landscape roughness in the WT case:

- < m > (t) fitted with one exponential in the WT case;
- some mutation present a fast folding phase.

Protein relaxation in folding condition as function of time, starting from a random configuration with infinite temperature probability. Average calculated over 2000 molecules.

Kinetics: Results

Pathway heterogeneity

Example of two single protein folding. It is possible to distinguish differents behaviors that could suggest the pathway heterogeneity.

Kinetics: Results

Definition of pathways:

- a C-terminal fold first, unfold last;
- b N-terminal fold first, unfold last.

	k_1	C1	а	b
	(10 ⁻⁷)		(%)	(%)
folding	1.279(9)	0.814(4)	80.2	19.8
unfolding	4.76(8)	0.965(4)	40.2	59.8

Rates and amplitudes (from 1-exponential fits) and fraction of molecules that select folding pathway *a* and *b*, in the case of folding and unfolding relaxations of the WT protein.

Folding

 $< t_{\alpha} >$ patterns of helices stabilization in folding (top) and unfolding (bottom) processes.

Mutants

	folding				unfolding			
	<i>k</i> 1	k ₂	a _f	b _f	<i>k</i> 1	k ₂	au	bu
	(10^{-7})	(10 ⁻⁷)	(%)	(%)	(10^{-7})	(10^{-7})	(%)	(%)
WT	1.29	-	80.2	19.8	5.08	-	40.2	59.8
$S_{1,2}$	1.22	-	85.1	14.9	5.20	32.0	85.7	14.3
S_3	0.058	1.26	98.7	1.3	5.00	-	39.6	60.4
$S_{7,8}$	1.26	-	61.7	38.3	6.95	47.8	1.7	98.3

Rate and fraction of molecules that select folding pathway *a* and *b* in the case of folding and unfolding dinamics for different types of perturbation, as compared to the wild type (WT). Missing entries in column k_2 mean that the 1-exponential fit was sufficient, and the 2-exponential one would produce overfitting.

Conclusions

• We have applied the results of WSME model to the not-so-small repeat protein Myotrophin.

Equilibrium:

- WSME model provide a fast algorithm to resolve the equilibrium problem;
- Two-state-like bahavior at equilibrium despite simplicity and non banal energy profile.

Kinetics:

- Two-state-like general bahevior;
- Pathways multiplicity;
- Mutants behavior as pathways switchers;
- Non-symmetry between foldind and unfolding pathways.

