Beyond Communities: Dynamical Markov Modules

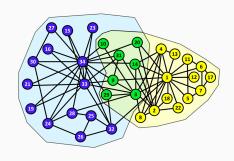
Mauro Faccin Jean-Charles Delvenne ICTEAM, Université Catholique de Louvain, Belgique

CCS 2106 - Amsterdam

Partitioning Problem

Why should we care

- A simple description of the structure
- A model for the system dynamics
- Insight



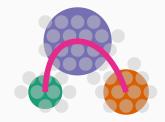
Projected Markov Chain

Markov Chain

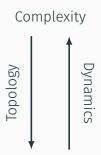
$$\dots, x_{\text{past}}, x_{\text{now}}, x_{\text{future}}, \dots$$

Projection

$$\dots, Y_{\text{past}}, Y_{\text{now}}, Y_{\text{future}}, \dots$$



Complexity



Complexity

Memories

Assess the Partition Quality 1

Projected Markov Chain:

$$\dots, Y_{\text{past}}, Y_{\text{now}}, Y_{\text{future}}, \dots$$

Maximize predictability:

I(Y_{future}; Y_{past})

amount of information flowing from past to future.

 $I(Y_{\text{future}}; Y_{\text{past}}) \leq I(x_{\text{future}}; x_{\text{past}})$

- Increases predictability of future with knowledge of past;
- Favors heterogeneous module-linking;
- Favors homogeneous module size;
- \cdot $I(\cdot; \cdot)$ is Mutual Information

Assess the Partition Quality 2

Projected Markov Chain:

$$\dots, Y_{past}, Y_{now}, Y_{future}, \dots$$

Minimize memories:

 $I(Y_{\text{future}}; Y_{\text{past}}|Y_{\text{now}})$

higher order memory embedded into the process.

 $I(Y_{\text{future}}; Y_{\text{past}} | Y_{\text{now}}) \ge I(x_{\text{future}}; x_{\text{past}} | x_{\text{now}}) = 0$

- Higher compression can require knowledge of the past dynamics (memories);
- Projected dynamics could differ from dynamics on the projected topology;
- $I(\cdot; \cdot)$ is Mutual Information

 $\mathcal{F} = \alpha \, I(Y_{t+1}; Y_t, Y_{t-1}, \ldots) - I(Y_{t+1}; Y_{t-1}, \ldots | Y_t)$

Predictability

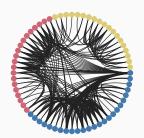
$$\mathcal{F} = \alpha \ I(Y_{t+1}; Y_t, Y_{t-1}, \ldots) - I(Y_{t+1}; Y_{t-1}, \ldots | Y_t)$$

nice behavior for $\alpha = 1$:

$$\mathcal{F}_P = I(Y_{t+1}; Y_t)$$

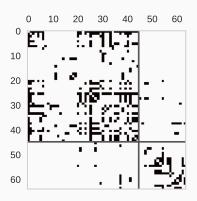
- Easy to compute
- · Under some conditions is the same as DCSBM
- Plenty of algorithms

Blocks on Weighted Networks

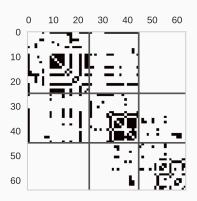


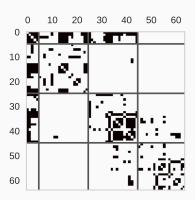
Contacts between suspect terrorists involved in the attack to Madrid station (2004).¹

¹The March 11th Terrorist Network: In its weakness lies its strength, José A. Rodríguez

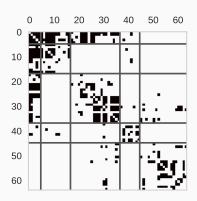


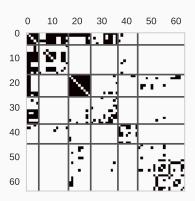
M.Faccin, NetSci2016 9





M.Faccin, NetSci2016 9





Predictability vs Markovianity

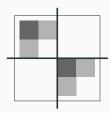
$$\mathcal{F} = \alpha \ I(Y_{t+1}; Y_t, Y_{t-1}, \ldots) - I(Y_{t+1}; Y_{t-1}, \ldots | Y_t)$$

A bit harder with $\alpha = 0$:

$$\mathcal{F}_M = -I(Y_{t+1}; Y_{t-1}, \dots | Y_t)$$

- · Markovian model dynamics
- Not biased toward predictable models
- Harder to compute but easy to implement with actual algorithms

What's the best model?

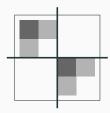


Better predictability of the dynamics

Also this is a perfect description of the system

$$\mathcal{F}_P(C) > \mathcal{F}_P(CP)$$

What's the best model?



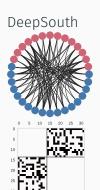
Better predictability of the dynamics

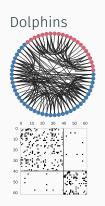
Also this is a perfect description of the system

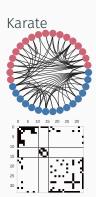
$$\mathcal{F}_{P}(C)$$
 > $\mathcal{F}_{P}(CP)$

$$\mathcal{F}_P(C)$$
 > $\mathcal{F}_P(CP)$
 $\mathcal{F}_M(C)$ = 0 = $\mathcal{F}_M(CP)$

Many others







Dynamics define partitioning

- · Dynamics define partitioning
- Predictability vs Markovianity

- Dynamics define partitioning
- Predictability vs Markovianity
- Only needs dynamics (topology not necessary)

- Dynamics define partitioning
- Predictability vs Markovianity
- Only needs dynamics (topology not necessary)
- Extends DCSBM to weighted graphs

- · Dynamics define partitioning
- Predictability vs Markovianity
- Only needs dynamics (topology not necessary)
- Extends DCSBM to weighted graphs
- Non-Markovian Systems

Workshop Advertisement

See you on Wednesday at:

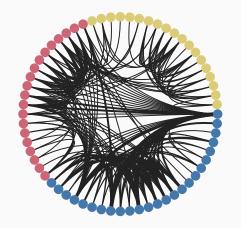
Summary

A fundamental issue in the field of complex systems is to identify the most important interactions or processes within a system so that we may better understand them. Coarse-graining methods attempt to abstract away unnecessary details, leaving behind a simplified interpretable representation of the system. Coarse-graining approaches are well-established in many different

Full day workshop

http://michaelschaub.github.io/ccs_at_ccs_2016/

Questions?



Joint work with:

JC Delvenne

@ ICTEAM and BigData Group, UCLouvain.

Good partitioning is the one leading to an interesting reduced model