USE OF COMPARTMENTAL MODELS TO DETECT HIGH TB INCIDENCE RATES IN SOUTH KIVU (DRC)

Mauro Faccin

TUBERCULOSIS UNDER-DETECTION

- 4 million of undetected/untreated TB cases, yearly [WHO]
- Hard to reach communities with high levels of TB incidence:
 - rural areas
 - unequal access to health services
 - costly interventions in remote areas
- hidden pockets of population with high incidence of TB

Efficient approach to ACF

Data driven estimation of TB incidence rates to focus health-care interventions such as Active-Case Findings (ACF)

Active-Case Finding: systematic screening of the population for active TB cases.

THE MODEL

Use of compartmental models (SIS) to disaggregate the reported cases.

Assumption

Endemic disease with slowly evolving well mixed population

$$\begin{cases} \frac{dS}{dt} &= \gamma I - \beta \frac{IS}{S+I} \\ \frac{dI}{dt} &= \beta \frac{IS}{S+I} - \gamma I . \end{cases}$$

ightarrow fit the parameters to:

- the number of cases reported by the local health system subunits;
- the population density in as estimated in a 100m² lattice [Worldpop]

MODEL REFINEMENT

We include additional data to refine the model:

- Mine locations (we expect higher incidence rates close to mining activities);
- Health facilities (we expect a high number of undetected cases far from health-care facilities),

from a number of openly available sources:

- OpenStreetMap
- ► IPIS Research Project

INCIDENCE RATE ESTIMATION

The estimated incidence rates highlight to the location of population pockets with high risk of TB. This can guide ACF interventions in an

efficient way.

color	incidence rate				
	>0.1%				
	>0.32%				
	>0.5%				
	>1%				

MULTICENTRIC CLINICAL TRIAL

We performed a multicentric clinical trial addressing 11 location with heterogeneous estimated incidence rate.

DIGITAL SUPPORTED QUESTIONNAIRE

Triage survey based on symptom, exposure and environment weighted questions.

Use of **MediScout**[©] (Savics, Belgium) for screenings activities:

 Mobile apps to plan and carry on the survey

	(
👔 📾 🛊 🖝 🔈 🛜 🚛 36% 🔓 12:22		O 🛛 🕯	a ę 4	•	(îr.	all 369
- Mission 1		Surve				
iomag eRubavu		Q1				Q5
Kinazi Kinazi Kinazi Kinazi		• Do y symp allow	ou pre toms (ed)?	sent th multipl	e follo e ansv	wing vers
Mission 1 6/15 >		□ Co	ugh for n	nore than	two week	.5
		Un	explained	d weight k	988	
escription			ght sweat	15		
esc mission 1		Un Un	explained	fatigue		
Megory		🗌 Blo	ood in spi	utum		
В						
reenings total						
5						
ested date						
7, Jun 2018						
radline						
\triangleleft 0 \Box			\triangleleft	C)	

DIGITAL SUPPORTED QUESTIONNAIRE

Triage survey based on symptom, exposure and environment weighted questions.

Use of **MediScout**[©] (Savics, Belgium) for screenings activities:

- Mobile apps to plan and carry on the survey
- Web app to collect data and perform analysis

RESULTS

screenings	13.841
lab tests	1153
positive cases	112

> 80% of positive cases originated from location at estimated at high risk (incidence rate higher than 1%).

RESULTS

screenings	13.841
lab tests	1153
positive cases	112

> 80% of positive cases originated from location at estimated at high risk (incidence rate higher than 1%).

OTHER PILOT PROJECTS

We performed additional tests with similar results:

- Fungurume (Lualaba, DRC): a mining area;
- ▶ Kigali (Rwanda): an urban area

FUNGURUME – MINING AREA

In Fungurume we could not address heterogeneous communities.

Screenings	4776
Locations	6
Tests (Xpert MTB)	458
positive cases	33

Some outliers are probably due to the low statistics.

KIGALI – SATELLITE IMAGERY

In urban areas the same assumptions on well mixed population of compartmental models cannot be applied.

Use of computer vision algorithms to detect highly populated neighborhoods.

Algorithms

 detection of high density of object contours;

detection of green areas \$\overline\$.

KIGALI – SATELLITE IMAGERY

In urban areas the same assumptions on well mixed population of compartmental models cannot be applied.

Use of computer vision algorithms to detect highly populated neighborhoods.

Algorithms

 detection of high density of object contours;

detection of green areas \$\overline\$.

MEASURED INCIDENCE RATES

Measured incidence rates in high-risk areas is almost twice that at lower-risk areas.

Screenings	10422
Tests (Xpert MTB)	202
positive cases	9

In all cases, in high risk areas, we increased ACF efficiency.

<u>South Kivu</u>			Fungurume			Kigali		
Communities	NNS	NNT	Communities	NNS	NNT	Areas	NNS	NNT
Low risk High risk	396 60	18.2 8.5	Low risk High risk	167 123	19.4 8.7	Low risk High risk	1678 1009	33.5 19.3

NNS: Number of screenings needed to find 1 positive case **NNT:** Number of lab tests needed to find 1 positive case

THANKS AND COMMENTS

Thanks to all collaborators:

- Emmanuel Andrè (UZLeuven, UKLeuven, Belgium)
- Fairouz Boutachkourt (UCLouvain, Belgium)
- Savics (Belgium)
- Rwanda Biomedical Center
- Ambassadeurs de la lutte contre la Tuberculose (Bukavu, DRC)
- Fungurume Mining (Lualaba, DRC)

More information at: M.Faccin et al., Scientific Reports, 12(3912) p.2045-2322 (2022) and https://maurofaccin.github.io/cartotb

I will happily answer to any question or comment.

Mauro Faccin:

- -
- https://maurofaccin.github.io
- mauro.fccn@gmail.com