
Memory and Mesoscopic Structures
in Diffusion Processes

Mauro Faccin
Jean-Charles Delvenne

ICTEAM, Université Catholique de Louvain, Belgique

CompleNet 2016 - Dijon

Abstract
Here we propose an info-theoretical measure of lumpability. By computing the amount of information that flows from the past of the
aggregated Markov chain toward its future one can devise the lumpability of the network on the given block structure, a partition of the
original network. The dynamical properties of the aggregated system provide a powerful mechanism to detect underlaying mesoscopic
structures that influence the system kinetics. The topology of those structures include communities, core-periphery, bipartite, block
stochastic structures.

Definitions:
• a graph G = V, E
• a Markov Chain on top of G:

X = {X0, X1, . . .}
• a non-overlapping partitioning of the system (such as a community
structure)

The Problem:
The projection of the Markov Chain X on a partition of the system can
generate on the aggregated dynamics unwanted effective memory. The
latter prevents to map the system dynamics to a memoryless process on
the aggregated topology.

Whole system Aggregated system

The Solution:
We must enforce the partition or community structure to reflect the
dynamical properties of the original process. In this case the aggregated
network represents a good model for the original system.

Given the Markov Chain X , its projection to the aggregated topology is
Y = {Y0, Y1, . . .}

The flow of information as means of mutual information
Ik = I(Yt+1; Yt−k, . . . |Yt, . . . , Yt−k+1)

provides a proxy of the lumpability of the stochastic process on the
aggregated network. Here Ik denotes the amount of information that
flows from the process past toward its future and gives a measure of the
memory order k of the aggregated dynamics.
The highest value of k with non-negligible Ik represents the Markovianity
order of the aggregated dynamics.

Recipe:
Maximize: I0 = I(Yt+1; Yt, . . .) the information flow from the past to the

immediate future (provides predictability of the process)
Minimize: Ik, ∀k > 0 the information flow from past toward future given

the knowledge of the present (ensures Markovianity of the
aggregated process)

Aknowledgement:
This work was supported by the Belgian Programme of Interuniversity Attraction Poles,
initiated by the Belgian Federal Science Policy Office and an Action de Recherche
Concertée (ARC) of the French Community of Belgium.

Examples:

I0 I1 I2 I3

Memory Level

0.0

0.2

0.4

0.6

M
a
rk

o
v
 I
n
d
e
x

right

merge

wrong
Community structure in a scale free network.
The community structure represents a good
model with high I0 and negligible higher or-
der effects. Other partitioning attempts lead to
lower information on flow or higher order mem-
ory effects.

Overlapping Communities. The uncertainty on
community attribution of the overlapping nodes
is solved when those nodes are assigned to a
new independent block acting as a bridge. As-
signing those nodes to the closer block gives an
aggregated dynamics with higher order memory,
incompatible with the original process.

Hierarchical Communities. Finer block decom-
position capturesmore information at finer time
resolution (finer data). When temporal sam-
pling is applied, on the other hand, both the
finer and the coarser models provide compa-
rable insight into the system dynamics. Higher
order memory is negligible in both cases.

Equitable Partitions:
The following small graph represents a challenge: community-wise the
green/orange partition is preferred for its high modularity; on the other
hand the white/gray division is an equitable partition with perfect
Markovian dynamics.

white/gray perfect equitable partition, perfect
Markovian aggregated dynamics, recovered
with cost function f = I1

green/orange good partition with negligible
memory effects, higher predictability of
the dynamics, recovered with cost function
f = I1 − I0

Partition Detection:
Given an undirected network with block stochastic structure (adj. mat.
below), the underlaying blocks are recovered with a simple hierarchical
algorithm and cost function f = I1 − I0.

0 5 10 15 20
num. of partitions

0.00

0.05

0.10

0.15

0.20

0.25

0.30
I0 − I1 per partition

plain hier
opt hier

0 5 10 15 20
num. of partitions

0.0

0.2

0.4

0.6

0.8

1.0

1.2
I0 − I1

plain hier
opt hier

←

0 50 100 150
0

50

100

150

The best partition corresponds to the given structure (with negligible
number of mis-assigned nodes).


