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Modules defined by dynamics

“Nothing is fun on the
internet anymore”




Projected Markov Chain

Markov Chain Projection
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Assess the Partition Quality 1

Projected Markov Chain:

’ Ypasta Ynovva quturea ©00

Maximize predictability: - Increases predictability of

future with knowledge of past;
I(quture; Ypast)
- Favors heterogeneous
amount of information .
flowing from past to future. module-linking;

- Favors homogeneous module
size;

’(quture?ypast) < ’(Xfuture;xpast)

- I(+; -) is Mutual Information
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Assess the Partition Quality 2

Projected Markov Chain:

ey Ypasta Ynovva quturea L

Minimize memories: - Higher compression can
require knowledge of the past

(Ytuuures YoastVnow) dynamics (memories);

higher order memory

embedded into the process. ~ * Projected dynamics could

differ from dynamics on the
projected topology;

1(Yutures Ypasthow) > ’(Xfuture:xpast|xnow) =0

- I(+;-) i1s Mutual Information
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Put together:

F =« I(Yt+1; Yt, Yt_1, .o .) — I(Yt+1; Yt_1, o o |Yt)



Predictability

F =« I(Yt+1; Yt, Yt_1, .o ) — I(Yt+1; Yt_1, R |Yt)

nice behavior fora = 1:
Fp = 1(Yeg1s Y1)
- Easy to compute

- Under some conditions is the same as DCSBM

- Plenty of algorithms
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Blocks on Weighted Networks
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Contacts between suspect terrorists involved in the attack to
Madrid station (2004).

1The March 11th Terrorist Network: In its weakness lies its strength, José A. Rodriguez
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Level of Details
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Level of Details

M.Faccin, Complex Networks 2016 8



Many others

DeepSouth Dolphins
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Predictability vs Markovianity

F=« I(Yt+1; Yt, Yt_1, .o ) — I(Yt+1; Yt_1, e |Yt)

A bit harder with a« = 0:

]:M = —I(Yt+1; Yt_1, oo

Yt)

- Markovian model dynamics
- Not biased toward predictable models

- Harder to compute but easy to implement with actual
algorithms
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What's the best model?

m-

Better predictability of the Also this is a perfect
dynamics description of the system

Fp(C) > Fp(CP)
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What's the best model?

Better predictability of the

dynamics

Fp(C)
Fm(C)
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Also this is a perfect
description of the system

Fp(CP)
Fm(CP)




Non Markovian Dynamics



Non Markovian Dynamics

One can image a the @ = X i
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- people from each quartiers go ] of

to work on the morning;

- they go back home at night B




Non Markovian Dynamics

One can image a the
Erdés—-Rényi city with two P X 7
quartiers where: S ’ Nt

- people from each quartiers go
to work on the morning; #

- they go back home at night

I(Yt]Ye—1, Yi—2)
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Non Markovian Dynamics

B el B
I(Ye; Yior) : n
without memories: : ‘ =
no structure X 7 .y X
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Non Markovian Dynamics

l(Yt: Yi_a, Yt—z)
considering
memories:
structure in
dynamics
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Concluding enae

- Dynamics define partitioning

- Predictability vs Markovianity

- Only needs dynamics (topology not necessary)
- Extends DCSBM to weighted graphs

- Non-Markovian Systems



Questions?

Joint work with:
JC Delvenne

@ ICTEAM and BigData Group,
UCLouvain.

https://maurofaccin.github.io

Good partitioning is the one leading to
an interesting reduced model
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