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What about other link patterns?
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Modules defined by dynamics
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Projected Markov Chain

Markov Chain

. . . , xpast, xnow, xfuture, . . .

Projection

. . . , Ypast, Ynow, Yfuture, . . .
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Assess the Partition Quality 1

Projected Markov Chain:

. . . , Ypast, Ynow, Yfuture, . . .

Maximize predictability:

I(Yfuture; Ypast)

amount of information
flowing from past to future.

I(Yfuture; Ypast) ≤ I(xfuture; xpast)

• Increases predictability of
future with knowledge of past;

• Favors heterogeneous
module-linking;

• Favors homogeneous module
size;

• I(·; ·) is Mutual Information
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Assess the Partition Quality 2

Projected Markov Chain:

. . . , Ypast, Ynow, Yfuture, . . .

Minimize memories:

I(Yfuture; Ypast|Ynow)

higher order memory
embedded into the process.

I(Yfuture; Ypast|Ynow) ≥ I(xfuture; xpast|xnow) = 0

• Higher compression can
require knowledge of the past
dynamics (memories);

• Projected dynamics could
differ from dynamics on the
projected topology;

• I(·; ·) is Mutual Information
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Put together:

F = α I(Yt+1; Yt, Yt−1, . . .)− I(Yt+1; Yt−1, . . . |Yt)
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Predictability

F = α I(Yt+1; Yt, Yt−1, . . .) − I(Yt+1; Yt−1, . . . |Yt)

nice behavior for α = 1:

FP = I(Yt+1; Yt)

• Easy to compute
• Under some conditions is the same as DCSBM
• Plenty of algorithms
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Blocks on Weighted Networks
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Contacts between suspect terrorists involved in the attack to
Madrid station (2004).1

1The March 11th Terrorist Network: In its weakness lies its strength, José A. Rodríguez
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Level of Details
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Many others

DeepSouth
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Predictability vs Markovianity

F = α I(Yt+1; Yt, Yt−1, . . .) − I(Yt+1; Yt−1, . . . |Yt)

A bit harder with α = 0:

FM = −I(Yt+1; Yt−1, . . . |Yt)

• Markovian model dynamics
• Not biased toward predictable models
• Harder to compute but easy to implement with actual
algorithms
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What’s the best model?

Better predictability of the
dynamics

Also this is a perfect
description of the system

FP(C) > FP(CP)
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What’s the best model?

Better predictability of the
dynamics

Also this is a perfect
description of the system

FP(C) > FP(CP)
FM(C) = 0 = FM(CP)
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Non Markovian Dynamics
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Non Markovian Dynamics

One can image a the
Erdős–Rényi city with two
quartiers where:

• people from each quartiers go
to work on the morning;

• they go back home at night

A B
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Non Markovian Dynamics

One can image a the
Erdős–Rényi city with two
quartiers where:

• people from each quartiers go
to work on the morning;

• they go back home at night

I(Yt|Yt−1, Yt−2)

A B
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Non Markovian Dynamics

I(Yt; Yt−1)

without memories:
no structure

A A

B B
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Non Markovian Dynamics

I(Yt; Yt−1, Yt−2)

considering
memories:
structure in
dynamics B B

A A

M.Faccin, Complex Networks 2016 13



Concluding

• Dynamics define partitioning

• Predictability vs Markovianity

• Only needs dynamics (topology not necessary)

• Extends DCSBM to weighted graphs

• Non-Markovian Systems
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Questions?

Joint work with:

JC Delvenne

@ ICTEAM and BigData Group,
UCLouvain.

https://maurofaccin.github.io

Good partitioning is the one leading to
an interesting reduced model
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