Memory and Mesoscopic Structures in Diffusion Processes

Mauro Faccin Jean-Charles Delvenne ICTEAM, Université Catholique de Louvain, Belgique

Netsci-X 2016 - Wrakłow

Partitioning Problem

Why should we care

- simple description
- system model
- mesoscopic structures

Good partitioning is the one leading to an interesting reduced model

Projected Markov Chain

Markov Chain

$$\ldots, \mathbf{X}_{past}, \mathbf{X}_{now}, \mathbf{X}_{future}, \ldots$$

Projection

$$\dots, \mathbf{Y}_{past}, \mathbf{Y}_{now}, \mathbf{Y}_{future}, \dots$$

UCLouvain BigDataGroup

Recipe

Projected Markov Chain:

 $\dots, \mathbf{Y}_{past}, \mathbf{Y}_{now}, \mathbf{Y}_{future}, \dots$

Maximize: I(Y_{future}; Y_{past})

amount of information flowing from *past* to *future*.

 $I(Y_{\text{future}};Y_{\text{past}}) \leq I(x_{\text{future}};x_{\text{past}})$

Minimize: I(Y_{future}; Y_{past}|Y_{now})

higher order memory embedded into the process.

 $I(Y_{\text{future}};Y_{\text{past}}|Y_{\text{now}}) \geq I(x_{\text{future}};x_{\text{past}}|x_{\text{now}}) = 0$

Ynow

Def. Markov Index:

$$\mathbf{I}_k = \mathbf{I}(\mathbf{Y}_{\text{future}}; \mathbf{Y}_{\text{past}} | \mathbf{Y}_1, \dots, \mathbf{Y}_k)$$

UCLouvain BigDataGroup

Example: Scale-Free Communities

right: same partitions for building merge: two partitions merged wrong: a number of nodes mis-assigned High **I**₀ and low higher order memory effects. Keeps most information.

If I merge two partitions I *lose* useful information.

Wrong node assignation can lead to unwanted memory effects.

UCLouvain BigDataGroup

Example: Overlapping Partitions

The overlapping area is best assigned to an independent partition

Trying to assign to neighbour partitions leads to unwanted memory effects

UCLouvain BigDataGroup

Example: Hierarchies

Time sampling:

A more detailed partitioning leads to higher first order Markov Index (**I**₀)

With time sampling, gain on \mathbf{I}_0 is negligible

UCLouvain BigDataGroup

Example: Block Models

The approach generalizes to other types of mesoscopic structures as block models, core-periphery structures...

UCLouvain BigDataGroup

Questions?

Outline:

- Partitioning based on system dynamics,
- Generalize to overlapping partitions, hierarchical structures, block structures ...
- Auto-select partition number, proper time-scale

Joint work with: JC Delvenne @ ICTEAM and BigData Group, UCLouvain.

Good partitioning is the one leading to an interesting reduced model

Too late for the KCC Trophy? Dammit!

Simplistic approch: hierarchical algorithm with cost function $I_1 - I_0$.

This is the best partitioning, blue/green has core/periphery structure.

UCLouvain BigDataGroup