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Projected Markov Chain

Markov Chain

. . . , xpast, xnow, xfuture, . . .

Projection

. . . , ypast, ynow, yfuture, . . .
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Complexity

Where did the complexity go?

Part of the complexity is now hidden
in the [projected] dynamics.

Emergence of effective memories.
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Chart-bar The Entrogram



Entrogram

Information flowing from the PAST toward the FUTURE.

I0 = I(yt; yt−1, . . .)

I1 = I(yt; yt−2, . . . |yt−1)
I2 I3 I4

Recall:

. . . , xt, . . . the Markov Chain on the
original space

. . . , yt, . . . the projection of the Markov
Chain on the aggregated space

where I(X; Y) = H(X) − H(X|Y) is the Mutual Information

Faccin, Schaub, Delvenne Journal of Complex Networks, 6(5), 2018, p661–678
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Entrogram: Information flowing from the PAST to the FUTURE

I0

I1
I2 I3 I4

I(yt; yt−2, yt−3, . . .|yt−1)

t− 3 t− 2 t− 1 t t+ 1

Faccin, Schaub, Delvenne Journal of Complex Networks, 6(5), 2018, p661–678
Crutchfield and Young (1989) PRL, 63, 105.
Crutchfield and Feldman (2003) Chaos, 13, 25–54.
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Entrogram: a compact description of the system complexity

I0

I1
I2 I3 I4

[Total] Predictability, how the dynamics
are aligned to the partition.

Emergent effective memory

+ Overall complexity (excess entropy)
of the dynamical process

Faccin, Schaub, Delvenne Journal of Complex Networks, 6(5), 2018, p661–678
Crutchfield and Young (1989) PRL, 63, 105.
Crutchfield and Feldman (2003) Chaos, 13, 25–54.
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GHOST Spectral Partitions

Consider the structure of the
eigenvectors of the transition
matrix (AD−1).

Eigenvalues
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Entrogram of the bow-tie graph

I0 I1 I2 I3
10−3

10−2

10−1

100
Assortative
hKS = 0.644
Equitable
hKS = 0.965
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PROJECT-DIAGRAM Aggregation strategies



Non-linear correlations

AutoInformation

I(yt; yt−τ )

Non-linear correlation
between successive time-steps

I0 = I(Yt; Yt−τ , . . .)

I1 = I(Yt; Yt−2τ , . . . |Yt−τ )

I2 I3 I4
Hr

I(Yt; Yt−τ )

where τ represents a time-scale parameter.

A proxy for Predictability and Markovianity.

M.F. et al, Journal of Complex Networks, cnx055
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Random walk covariance

How much the dynamics are trapped
by a partition?

Let’s consider a partition of nodes into
classes where χc is the characteristic
function of class c.

Partition autocovariance along the
dynamics→

Cov(X, Y) = E(XY) − E(X)E(Y)

E(χc(t)χc(t − 1)) =
1
2m

∑
ij∈c

Aij

E(χc(t)) =
1
2m

∑
i∈c

ki

where ki =
∑
j

Aij

and m =
1
2
∑
ij

Aij

In symmetric networks.
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Modularity

Random walker covariance
χc characteristic function of class c

Q =
∑
c

Cov (χc(t), χc(t + 1))

Modularity:

Q =
1
2m

∑
ij

[
Aij −

kikj
2m

]
δ(ci, cj)

Linear correlation between consecutive time-steps.

Shen et al. (2010) PRE, 82, 016114
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Generative models as particular case

Fitting a generative model (e.g. DC-SBM) to the data through log-likelihood
maximization can be seen as maximizing the AutoInformation for paths of lenght
τ = 1 (e.g. links).

I(Yt; Yt−1) = H(Yy) + H(Yt−1) − H(Yy, Yt−1)

H(Yt) = −
∑
c

ec
2m

log
ec
2m

ec =
∑
i∈c,j

Aij

H(Yt, Yy−1) = −
∑
cd

ecd
2m

log
ecd
2m

ecd =
∑

i∈c,j∈d

Aij

DC-SBM

S ∝
1
2
∑
cd

ecd log
ecd
eced

In binary symmetric networks
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Non-linear communities

AutoInformation and its connections with other approaches.

AutoInformation: I(Yt, Yt−τ )

Modularity
Q ∝

∑
c Cov (χc(t), χc(t + 1))

DC-SBM
I(Yt; Yt−τ ) ∝ −

∑
rs ers log

ers
eres

In some cases
Spectral Properties

Shen et al. (2010) PRE, 82, 016114.
Karrer and Newman (2011), PRE 83, 016107.
Rosvall and Bergstrom (2008) PNAS 105, 1118.
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Facts

AutoInformation

I(yt; yt−τ )

Non-linear correlation
between successive time-steps

Maximizing in a naive way is not
possible, one need to fix the number of
classes or use a model selection:
I = I(yt; yt−1) − αH(yt)

The parameter τ selects the time-scale
of the aggregation.
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Chalkboard-Teacher Didactic Examples.



Example 0: One cycle

A regular ring lattice with N nodes, each connected with k neighbours.

How many classes?

Adj:

τ
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Example 1: Range dependant graphs

pij =αcicj · (γcicj)
dij

αcicj , γcicj ∈ [0, 1]

with dij a (normalized) distance between
nodes aligned on a cycle.
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Example 1: Range dependent graphs

DC-SBM

spectral
AutoInfo τ = 1
AutoInfo τ = 5
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Example 2. Ocean buoys

Global Drifter Program
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Example 3. Ocean buoys

Each time step lasts 16 days.
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RUNNING Finally…



Question-Circle Questions?

Joint work with:

JC Delvenne M Schaub

USER https://maurofaccin.github.io
Envelope mauro.fccn@gmail.com

Code at:
CODE-BRANCH https://maurofaccin.github.io/aisa
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